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Swirling flow in an axisy mmetric duct can support vorticity waves propagating 
parallel to the axis of the duct. When the cross-sectional area of the duct changes a 
portion of the wave energy is scattered into secondary vorticity and sound waves. 
Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby 
disturbances produced by unsteady combustion or turbine blading can be propagated 
along the pipe and subsequently scattered into aerodynamic sound. In  this paper a 
linearized model of this process is examined for low Mach number swirling flow in 
a duct of infinite extent. It is shown that the amplitude of the scattered acoustic 
pressure waves is proportional to the product of the characteristic swirl velocity and 
the perturbation velocity of the vorticity wave. The sound produced in this way may 
therefore be of more significance than that generated by vorticity fluctuations in the 
absence of swirl, for which the acoustic pressure is proportional to the square of the 
perturbation velocity. The results of the analysis are discussed in relation to the 
problem of excess jet noise. 

1. Introduction 
The noise produced by a low subsonic jet is dominated by sources associated with 

regions of the flow within or in the immediate vicinity of the jet pipe (Ffowcs Williams 
1977), and is usually referred to as excess j e t  noise to distinguish it from the noise 
arising from the turbulent mixing of the jet with the ambient atmosphere. The sound 
pressure level of the excess noise scales typically on a power of the jet velocity U lying 
between 3 and 6, whereas pure jet mixing noise varies according to Lighthill's (1952) 
U s  law. Experiments (Hoch & Hawkins 1973) indicate that nozzle-based sources tend 
to be important in determining the overall structure of the acoustic field-shape 
only at the lower jet velocities. However, there is an increasing body of both theoretical 
and experimental evidence (Ffowcs Williams 1977; Crighton 1975 a )  which suggests 
that at  the higher jet velocities excess noise sources provide a significant contribu- 
tion in radiation direction& forward of the aircraft and at  90" to the flight path, and in 
particular are affected by forward motion of the aircraft in a manner which largely 
accounts for the so-called forward-arc amplification of the sound with increasing flight 
velocity. 

Several possible mechanisms of excess jet noise have been examined in terms of 
detailed analytical models. Candel (1972), Marble (1973), Cumpsty & Marble (1974), 
Ffowcs Williams & Howe (1975) and Howe (1  975) have discussed the manner in which 
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temperature inhomogeneities generate sound when convected in a non-uniform mean 
flow. Cumpsty & Marble (1974) and Howe (1975) have investigated analogous problems 
in which the convected inhomogeneity is composed of a localized field of vorticity. 
The sound produced when such aerodynamic sources interact with struts and sharp 
trailing edges has been analysed by Jones (1972), Crighton ( 1 9 7 5 ~ )  and Howe 
(1976, 1977). Unsteady combustion processes generate pressure fluctuations which 
propagate down the jet pipe, and a linearized model of their subsequent interaction 
with the exterior jet flow prior to radiation into the far field has been proposed by 
Munt (1976). 

The study of excess jet noise is also of great interest in connexion with large-scale 
structures in the free jet. Sound radiated along the jet pipe from such excess jet noise 
mechanisms provides a possible stimulation of the large-scale instabilities of the free 
jet (Bishop, Ffowcs Williams & Smith 1971; Liu 1974; Merkine & Liu 1975) and could 
thus manifest itself via the radiation properties of the stimulated large-scale structure 
in addition to via direct radiation into the far field (Crighton 1975b). However, this 
would form the subject for study elsewhere and will not be discussed further in this 
paper. 

The flow in all real engine ducts is swirling to some extent because of the presence 
of a mean axial component of vorticity induced by turbines and guidevanes. Schwartz 
(1973) has argued that an increase in the degree of swirl could lead to a reduction in 
the intensity of turbulent fluctuations because of the action of centrifugal forces and 
this, in turn, should result in a reduced level of the jet mixing noise. Data obtained 
by Schwartz (1973) and Whitfield (1975) suggest that the only noise benefits 
are likely to be in the rear arc, i.e. in directions of propagation downstream of the jet 
nozzle, and then only at  rather low frequencies. Whitfield’s (1975) data indicate that 
such frequencies are below those of aeronautical interest. The effect of swirl on the 
turbulence in a free jet remains, however, to be examined theoretically and under- 
stood. 

I n  this paper a model problem is examined which indicates that the presence of 
swirl introduces an additional excess noise mechanism, and thereby increases the 
efficiency with which disturbances in the upstream region of the jet pipe are trans- 
formed into acoustic waves which radiate from the nozzle exit. This mechanism 
depends on the possibility that under appropriate conditions essentially incompressible 
dispersive vorticity waves can propagate along the duct parallel to the swirl axis. 
Turbulence, unsteady combustion and blading processes may be expected to be 
responsible for the generation of these waves. They are, of course, acoustically silent 
when propagating in a duct of uniform cross-section, but variations in duct geometry 
and the nozzle exit would both be expected to act as scattering centres at  which 
secondary vorticity and acoustic waves are formed. 

We consider the problem of the generation of sound which occurs when such a 
vorticity wave encounters a contraction (figure 1 a) or a necking (figure 1 b )  in a duct 
of infinite extent. This may be taken to model the situation in which the sound is 
generated sufficiently far upstream of the nozzle exit for the analysis of its subsequent 
radiation into free space to be treated separately. Ffowcs Williams & Howe (1975) 
have shown that at  small mean flow Mach numbers a reliable estimate of the free- 
space radiation may be obtained by applying Rayleigh’s (1945, chap. 16) transfer 
operator to the sound wave when it reaches the nozzle exit, a procedure which is also 
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FIQURE 1. A duct of infinite extent contains a steady, low Mach number swirling flow. A vorticity 
wave supported by the swirling flow is incident from upstream on (a) a small contraction and (a) 
a necking (of length 2L) in the cross-sectional area of the duct where secondary vorticity and 
sound waves are produced. 

expected to be of value when the scattering centre is located within an acoustic 
wavelength of the nozzle exit. 

The scattering problem is amenable to straightforward analysis only when it is 
assumed that the proportional change in the cross-sectional area of the duct is small. 
The characteristics of the emitted sound may then be determined directly from the 
equations of aerodynamic sound theory provided that the mean-flow Mach number 
and the dominant acoustic frequency are small enough that the disturbed flow in the 
scattering region may be regarded as essentially incompressible. This approach is very 
much analogous to that which was adopted by Lighthill (1953) in considering the 
interaction of sound with turbulence, and which was subsequently extended by Curle 
(1955) to problems involving solid boundaries. 

The aerodynamic sound problem is formulated and solved in $ 2  using a formula 
given by Howe (1975) describing the generation of sound by turbulence in non- 
uniform duct flows. Howe was concerned with localized turbulent eddies convected 
in an otherwise irrotational mean flow, and showed that the amplitude of the radiated 
pressure waves was proportional to the square of the turbulent fluctuation velocity. 
The mean flow had an appreciable effect on the frequency of the sound, but not on its 
intensity. This is not the case, however, when the duct flow is swirling and possesses 
a mean component of vorticity. In  the leading approximation the amplitude of the 
sound is arguably much larger, being proportional to the product of the characteristic 
swirl velocity and the perturbation velocity associated with the vorticity wave. In  
$ 3 the case of a harmonic vorticity wave is examined in detail for an arbitrary swirl 
velocity profile, and leads to a general expression for the scattered sound. This is 
specialized in § 4 to duct flow in solid-body rotation and the examples treated here are 
discussed ( $  5) in relation to the problem of excess jet noise. 

13-2 
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2. The aerodynamic sound problem 
Consider a steady flow in a nominally uniform duct of circular cross-section. Take 

cylindrical polar co-ordinates (x, r ,  0 )  of which 5 is measured along the axis of sym- 
metry of the duct and in terms of which the mean flow is given by 

(2.1) 

The axial velocity U is constant, but the swirl velocity w,,(r) is a function of the 
radial co-ordinate r .  

If the flow encounters a change in the cross-sectional area of the duct, such as the 
contraction of figure 1 (a) or the necking of figure 1 (b) ,  the motion downstream of the 
area change eventually returns to one of steady cylindrical flow unless the char- 
acteristic swirl velocity is large compared with U (Batchelor 1967, p. 550). In  the 
latter case it is possible for the change in cross-section to produce an axisymmetric 
train of steady vorticity waves in its wake. If e is a small parameter which characterizes 
the proportional change in the radius of the duct, it follows that the change in the 
mean flow is also of order e and may be regarded analytically as a steady field generated 
by the scattering of the incident flow at the area change. In  aeronautical applications 
the swirl velocity is relatively small and we shall therefore discount the possibility 
of there being a steady train of waves downstream of the area change. In  general the 
swirling flow can support unsteady vorticity waves which in the case of an engine 
jet pipe could develop in regions of unsteady combustion and turbine blading. They 
will also be scattered at the area change, where secondary vorticity and acoustic waves 
will be generated. 

The acoustic component of the scattered field may be determined directly from 
the Lighthill ( 1952) acoustic-analogy theory of aerodynamic sound. For non-uniform 
duct flows it is convenient to recast the Lighthill theory into a form in which the 

(2.2) 
stagnation enthalpy 

assumes the role of the fundamental acoustic variable. In  this expression h is the 
specific enthalpy of the fluid and v the velocity. In  the case of an ideal gas, and in 
situations in which it is permissible to neglect dissipation and transport phenomena, 
B is determined in terms of the vorticity o and the specific entropy 8 by means of 
the inhomogeneous wave equation 

u = (U, 0, wo(r)). 

B = 7L++v2 

B = div{o A v- TVS) - - Dv. - (0 A V - Fvs} (2.3) c2 Dt 

(Howe 1975), where c is the speed of sound, T the temperature and D/Dt the material 
derivative. In  the present discussion it will be assumed further that the flow is of 
uniform temperature and entropy. In  the absence of vorticity waves in the duct the 
stagnation enthalpy Bo, say, is constant on the Bernoulli surfaces formed by inter- 
secting families of streamlines and vortex lines. Accordingly only the time-dependent 
fluctuations in the source terms need be retained on the right of (2.3), and B may be 
reinterpreted as the local perturbation stagnation enthalpy in the manner described 
in detail by Howe (1976). 

In  order to solve (2.3) we introduce the following important approximations. First 
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the mean-flow velocity is taken to be sufficiently small that M2 4 1, where M = U / C .  
The sound speed c may then be regarded as constant throughout the flow, and terms 
of relative order M 2  maybe neglectedin (2.3). In  aeronautical applications the dominant 
Strouhal number St = 2falV 5 1 ,  where a is the duct radius and f (Hz) is the frequency 
of the generated sound (Lush 1971). At small values of the Mach number we are thus 
concerned with situations in which the characteristic wavelength of the sound is 
large compared with the diameter of the duct, and we shall suppose M to be sufficiently 
small that the dimension of the region in which the area change occurs is small on the 
scale of the wavelength. It then follows that the propagation of the incident vorticity 
wave may be described by the equations of incompressible flow. Further, for M less 
than about 0-5 the above restriction on the Strouhal number implies that the fre- 
quencies of interest are below the cut-off frequencies of all non-axisymmetric acoustic 
modes, and that upstream and downstream of the area change the scattered sound 
consists of plane waves. 

The general equation (2.3) may now be approximated by 

(f (i + U . k)2 - V2) B = div (o A v). 

Since the scattered acoustic waves &re one-dimensional in the distant field, the 
fluctuations in B are related to the acoustic pressure perturbation p and the mean 
density po as x -+ + 00 by 

a result which follows from (2.2) on noting that when the entropy is uniform h = sdp/p, 
where p is the local fluid density. In (2.5), M = Ulc is the Mach number of the axial 
mean flow introduced above, which, since E 4 1, takes approximately equal values 
on either side of the area change. 

The formal solution of ( 2 . 4 )  has been obtained by Howe (1975), who shows that the 
plane acoustic pressure waves radiated downstream of the area change may be ex- 
pressed in the form 

.E 2: ( 1 + J f ) P / P O ,  (2.5 ) 

1 = 2 A ( l + M ) J [ P  o ~ i ~ j e i j l d ~ ~ ,  (2.6) 

where A is the uniform cross-sectional area of the duct, po ui uj the jluctmting com- 
ponent of the Reynolds stress, and the integration is performed over the volume of the 
duct. The quantity in square brackets is evaluated at the retarded time 

t - ./[c( 1 + M)1, 

x being the position of an observer located far downstream (the origin of co-ordinates 
being in the vicinity of the area change). The second-order tensor e is determined by 
the geometry of the duct. It is given by 

and is the rate-of-strain tensor associated with steady, incompressible, irrotational 
flow at velocity U* through the duct, the potential $*(x) being normalized such that 
a$*/ax-t 1 as x-++00. The level of the radiated sound is thus proportional to the 
rate of working of the Reynolds stress in the rate-of-strain field of the duct. 
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3. The scattered sound: the case of a harmonic vorticity wave 

$*(x) necessarily describes an axisymmetric duct flow, it follows that 
Let (u, v ,  w )  denote respectively the (2, r ,  8 )  components of the flow velocity. Since 

(3 .1)  ui ui eij - u2exx + 2uve, + v2e, i- w2ege 

(see, for example, Batchelor 1967, p. 602).  Only the time-dependent part of this is 
required, and in a first approximation we may set 

u = U i-u', v = v', w = wo(r )+w' ,  ( 3 4  

where the primed quantities denote the small perturbations associated with an 
incident vorticity wave. The fluctuating part of (3.1) reduces to 

u, uj eij N -2 U (u'e, i- v'e,) + 2w0 w'ege (3 -3  1 
when second-order terms are discarded. 

Again, axisymmetry implies that ei j  does not depend on the azimuthal co-ordinate 
8. This means that in the present linear theory only axisymmetric disturbances 
(u', v ' ,  w') contribute to the radiated sound, the remaining components of the disturbed 
flow integrating to zero in (2 .6 ) .  The analysis may now be considerably simplified 
because the axisymmetric part of the flow can be expressed in terms of a Stokes 
stream function $, with 

The corresponding formula for the azimuthal velocity component w' will be considered 
below. 

We are now in a position to examine the contributions of the various terms in (3.3) 
to the radiation integral (2 .6) .  Consider the first term on the right of (3 .3) .  Since 

U' = r-la$/ar, V' = -+a$/&. (3 .4)  

exx = a2$*/ax2, e,  = a2#*/axar, (3 .5)  

the corresponding contribution to (2 .6 )  may be expressed in the form 

where in the linearized approximation the radius of the duct is taken to be constant 
and equal to a, that in the upstream flow region. Each of these integrals may be shown 
to vanish by integration by parts. The first because the perturbation stream function 
must vanish at the centre and at  the wall of the duct, and the second because a2$*/ar 89 
tends rapidly to zero as y +  i- 00. Thus no sound is produced by the first term on the 
right of (3 .3) .  The acoustic response is therefore determined by the second part of 
(3.3),  which depends on the swirl component w,,(r) of the mean velocity. Thus, noting 
that e,, = r-la$*/ar, we have 
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In  order to proceed beyond this formal result it is necessary to introduce a specific 
form for the disturbance velocity w'. We are assuming that the incident vorticity 
wave may be described by the equations of incompressible flow theory, and have 
shown that only the axisymmetric component of w' is required. Further, in the linear 
approximation variations in the duct geometry may be neglected in determining the 
form of the incident wave, and the three components of the momentum equation 
reduce to (;+u;)uf = - p o p  i apf 

2w0(r)wf 1 ap' 
Po ar' 

= --- 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

where p' is the incompressible pressure perturbation. In  solving these equations it 
may be assumed that the duct has constant radius a. 

When the pressure p' is eliminated and the Stokes stream function (3.4) is intro- 
duced, the system (3.8) becomes 

(3.9) 

An elementary solution of this equation which represents an axisymmetric disturb- 

+ = Y ( r )  exp {i(kz - wt)}, (3.10) 

where the wavenumber k is determined in terms of the radian frequency w through 
the boundary condition which requires that + should vanish at r = a (see Q 4 below). 
A general axisymmetric disturbance may be constructed by suitably superposing 
waves of this type. On substituting (3.10) into (3.9) we find thatY(r) satisfies 

ance in a duct of uniform cross-sectional area is 

rL!(iC)+( 1 a 
ar r ar (w-  Uk)2rSar (3.11) 

and by making use of ( 3 . 8 ~ )  we obtain the following representation for the azimuthal 
component wf of the disturbance velocity: 

-kY(r) a 
(W - Uk) r2 ar 

wf = - (wo r )  exp {i(kz - wt)}. (3.12) 

This result may be inserted into (3.7) to give the following expression for the 
pressure wave radiated downstream : 

-Vok Irn dyJoadr7 Wr) ;i;;((wOr)2) a Texp{i(ky-w[t])}, (3.13) 
E A ( 1 + M ) 2 ( w - U k )  -rn 

where [t] = t - z/c( 1 + M ) .  

linearly non-uniform duct. Define 
Now $* = $*(t-, y) describes a hypothetical axisymmetric irrotational flow in the 
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the Fourier transform of $* with respect to the axial co-ordinate y. Then @* satisfies 

(3.16) 

the Fourier transform of the axisymmetric Laplace equation, and (3.13) becomes 

(3.16) 

where [ ( r ,  k )  = a@*(r, k)/ar.  

The remaining integral in (3.16) may be evaluated by first noting that (3.15) implies 

5 (la ( r [ ) )  - k2& = 0. (3.17) 
ar rar 

Multiply this by Y ( r )  and (3.11) by&, subtract and integrate from r = 0 to a to obtain 

that [ satisfies 

The integral on the right can be evaluated by integrating by parts, and on noting that 
Y must vanish at  r = 0 and r = a it follows readily that (3.16) becomes 

(3.19) 

This result expresses the radiation in terms of the boundary values of aY/ar and 
a@*(k)/ar,  and indicates that it should be possible to express the scattered sound 
explicitly in terms of the shape of the duct. 

Let the boundary of the duct be expressed in the form 

r = a + e f ( x ) ,  (3.20) 

where the functionf(x) is O( 1) .  When e vanishes we have $* = x + constant. Thus for 
8 =I= 0, a$*/ax must depart from unity by an amount proportional to 8, and it follows 
that correct to O(a) the condition that the normal irrotational velocity a$*/an vanishes 
on the surface of the duct is 

(3.21) 
. -  

Hence (3.19) becomes 

(3.22) 
2n2€po( w - 

where 
F ( k )  = - (3.23) 

is the Fourier transform of the axial slope of the duct wall. 
Equation (3.22) is the principal result of this section, and determines the scattered 

sound in terms of the shape of the duct boundary and the axial component at the 
boundary of the perturbation velocity associated with the incident vorticity wave 
(3.10). No assumption has been made regarding the form of the swirl velocity profile 
wo(r). In  the absence of swirl (3.22) vanishes identically, because in that case linear 
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theory requires that a vortical disturbance convects at the mean-flow velocity U and 
hence that w -  Uk = 0. This is in accordance with the general result obtained by 
Howe (1975)) who showed that for an irrotational mean flow the sound produced by 
vorticity located near an area change is of second order in the perturbation velocity. 

4. Rigid-body rotational flow 
Let us now consider the particular case in which the mean flow in the duct is one of 

solid-body rotation at angular velocity B > 0 about the axis of symmetry. The swirl 
velocity profile is therefore given by 

wo(r)  = Br, (4.1) 

and equation (3.11) for the radial dependence Y of the incident vorticity wave 
Y ( r )  exp {i(kx - wt)} reduces to 

The solution of this equation which remains finite at  r = 0 is 

Y ( r )  = GrJl(yr) (4.3) 

(cf. Batchelor 1967, p. 546)) where Sis a parameter characterizing the amplitude of the 
wave and 

The condition that the perturbation stream function must vanish on the wall 
r = a of the duct implies that 

This characteristic equation determines the permissible values of y, and (4.4) then 
furnishes the following dispersion relation between k and w : 

(4.6) 

J1(ya) = 0. (4.5) 

w = Uk 5 2Qk/(y2 + k2)i. 

The zeros of J,(z) lie on the real axis (Watson 1966, p. 483)) so that (4.6) defines w 
as a real function of k, i.e. the vorticity wave is stable. 

Wave energy propagates a t  the group velocity awlak, which is given by 

aw/ak = U & 2Qy2/(y2 + k2)4. (4.7) 

It is positive for either choice of sign in (4.6) provided that the maximum swirl velocity 
Ba does not exceed QUya. This is certainly the case in aeronautical applications 
because Ba/U, the inverse Rossby number, is unlikely to be greater than about 0.5 
and the minimum non-trivial value of ya obtained from (4.5) is 3.83. The waves 
corresponding to the plus/minus sign in (4.6) may therefore be designated ‘fast )/‘slow’ 
waves in the present context, and fulfil the condition of our initial hypothesis that the 
vorticity waves may be regarded as generated by disturbances located upstream of 
the area change. 

Next, it follows from (4.3) and the known properties of Bessel functions that 

(aYp),,, = GyaJo(ya). (4.8) 
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Hence, substituting this into the formula (3.22) for the downstream scattered sound 
we find that 

use having been been made of the dispersion relation (4.6). 
This result shows that in order of magnitude p IV po Qav, where v may be regarded 

as the root-mean-square perturbation velocity of the vorticity wave obtained by 
averaging over the cross-section of the duct and over a wavelength 2nlk of the disturb- 
ance. It is convenient to normalize with respect to po Uv. Apart from a constant 
independent of k, v is given by the integral 

(4.10) 

Using in turn (4.6) and (4.3) we have 

v2 = is,"  ( rz)2 + (y2 + 2k2)Y2):  

(4.11) = $lo { ~ ~ J ~ ( y r ) ~ +  (y2+2k2)J1(yr)2}rdr .  

The integrand is an exact differential (McLachlan 1955, p. 103), and recalling that 

(4.12) 
J,(ya) = 0, we obtain v = 6(y2 + k2)* J 0 ( p ) .  

Hence (4.9) may now be expressed in the form 

6 2  a 

where it has been noted that A = na2. 
This expression illustrates the manner in which the acoustic response to the incident 

vorticity wave rapidly diminishes with increasing values of ka, the ratio of the duct 
radius to the hydrodynamic wavelength. If 1 is representative of the axial distance 
over which the area change occurs, i.e. for which af/ax is significantly different from 
zero, the Fourier transform S ( k )  is significant only for kl 5 1.  In  practice 1 is likely 
to be much smaller than the radius a of the duct, in which case (4.13) implies that the 
principal contribution to the scattered sound is provided by vorticity disturbances 
whose wavelength greatly exceeds 1, i.e. for which kl is small. When this is 80 a 
negligible error will be incurred by taking 1 = 0. 

Thus in the case of the simple contraction of figure 1 (a)  we shall suppose that the 
change in area takes place at x = 0, and that equation (3.20) for the duct boundary is 

r = a - mH(x), (4.14) 

H ( x )  being the Heaviaide step function. This means that S ( k )  = -a/2m, and that 
(4.13) becomes 

(4.15) 
c ( l + M )  

exp ( - iw (t - P 2 4  nap) ya 

p o v  ' (1 + M)2 [ ( y ~ ) ~  + ( k ~ ) ~ ]  
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FIGITRE 2. Variation of the peak Strouhal number St, of the interaction of a vorticity 
wave with a necking of length 2L in a duct of mean radius a. RafU = 0-3. 

For the situation depicted in figure 1 (b), we assume that the necking extends from 

r = a-m{H(z+L)-H(x-L)}. (4.16) 

Hence F ( k )  = (ia/n)sinkL, and the expression (4.13) for the scattered pressure 

2 = -L to x = Land  that 

(4.17) 
4k(na/U)  yasinkL wave is 

P 
p o v  = * (1 + N)2 [(yay + (ku)21  exp 

This indicates that very little acoustic energy is scattered from vorticity waves whose 
wavelength is large compared with the length of the contraction in the duct. 

5. Application to excess jet noise 
The dimensionless parameter yu which appears in (4.15) and (4.17) may be taken 

to be any one of the zeros of J,(ya) other than yu = 0. For increasingly large values of 
ya, corresponding to vorticity waves possessing a progressively more complicated 
transverse structure, (4.15) and (4.17) indicate that the efficiency with which sound 
is generated decreases. 

Equation (4.15) reveals that the sound produced by a contraction in the cross- 
sectional area of the duct is dominated by vorticity waves whose hydrodynamic 
wavelengths are large compared with the duct radius. On the other hand, when the 
contraction is of finite length 2L the strength of the radiation field given by (4.17) 
is controlled by the Fourier components of the incident disturbance having a small 
but finite value of the wavenumber k .  In  this case the radian frequency w for which 
the acoustic response is a maximum depends on the ratio of the length of the con- 
traction to the diameter of the duct, i.e. on L/a. This dominant frequency may be 
expressed as a Strouhal number St,,, = 2fa/U, where 27rf = w, and its variation with 
L/u is illustrated in figure 2 for the lowest-order radial mode (ya = 3.83) and a swirl 
of Ba/U = 0.3. The upper and lower curves in the figure correspond respectively to 
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FIGURE 3. The idealized geometry of the theoretical model used to estimate the free-spwe 
radiation arising from the interaction of a vorticity wave with a contraction upstream of a nozzle 
exit. 

the fast and slow vorticity waves of (4.6). As L/a tends to zero the dominant frequency 
ultimately becomes independent of L/a and is given by 

St, = n-l{ya 23( na/U)}. (6.1) 

These conclusions are strictly valid only when the scattered sound is conked 
within an infinitely long duct. The practical problem of swirling flow in a jet pipe of 
finite length, and in which significant variations is duct geometry occur close to the 
nozzle exit, cannot be treated by the simple direct approach described in this paper. 
However, the above predictions may be used to estimate the magnitude of the free- 
space radiation in the case in which most of the sound is generated sufficiently far 
upstream to justify the decoupling of the scattering problem and that describing the 
subsequent interaction of the sound with the nozzle exit. Equations (4.15) and (4.17) 
then provide formulae determining plane sound waves incident on the nozzle exit 
from within. It has already been assumed that the characteristic acoustic wavelength 
is large compared with the diameter of the duct, and this implies that most of the wave 
energy will be reflected back into the duct at  the nozzle. The amplitude of the sound 
which escapes into free space is of order wa/c smaller than that of the incident wave. 

The model duct configuration shown in figure 3 is probably the most appropriate 
in the present context, and the corresponding expression for the incident sound wave 
is furnished by (4.15). The free-space radiation P at a distance r from the nozzle 
exit has the approximate form 

where p( t )  is the pressure perturbation of the incident sound wave a t  the nozzle exit 
(Rayleigh 1945, chap. 16). This result neglects the scattering of the sound by the 
exterior jet flow. In  considering the problem of sound generation by entropy in- 
homogeneities, Ffowcs Williams & Howe (1975) have shown that (5.2) provides an 
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FIGURE 4. Variation of the free-space sound pressure level generated by (a) a 'fast' and (b)  a 
' slow' vorticity wave propagating through the contraction in the nozzle of figure 3 as a function 
of the Strouhal number St = 2falU for various values of the swirl RaIU. 

adequate representation of the acoustic field even when the sound is generated well 
within an acoustic wavelength of the nozzle exit. 

Figures 4 (a) and ( b )  illustrate the variation of the free-space sound pressure level 
in dB with the Strouhal number 2ful U €or the fast and slow vorticity waves respectively. 
In  each case only the lowest-order radial mode is considered, and the curves are plotted 
for values of the swirl QufU ranging from 0 ~ 1  to 0.5, with the mean-flow velocity U 
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and the vorticity wave's root-mean-square velocity v held fixed. The origin of the 
vertical scale is undefined to within an arbitrary constant, but is the same in both 
figures. In all cases the peak radiation occurs at  a Strouhal number of about 1-1.6 and 
increases steadily with the degree of swirl. Comparison of corresponding curves in the 
two figures shows that, for the present range of the swirl Qa/U and at  the same 
frequency, a fast vorticity wave is typically between 1 and 5 dB noisier than a slow 
wave. The precise value of the peak Strouhal number may be determined from (4.15) 
and (5.2). Noting that in practice QalU is sufficiently small that (Qa/U)z  may be 
neglected in comparison with unity and that (ya)2 has a minimum value of (3.83)2 1, 
it follows easily that the peak Strouhal number is given in the leading approximation 
by (5.1). In  that result the plus/minus sign refers to the fast/slow vorticity waves, and 
therefore St, increases with the swirl Qa/U for the fast waves and decreases for the 
slow waves. For the lowest-order radial mode y z  - 3.83, the peak Strouhal number 
is approximately 1.22, a prediction which is near to the peak Strouhal number of the 
pure jet mixing noise of a cold subsonic jet at  angles to the jet axis close to 90" (Lush 
1971). This indicates that the efficiency of a noise reduction mechanism which relies 
on the presence of swirl to reduce the intensity of the free-jet turbulence could well be 
significantly impaired by the swirl-associated excess noise source discussed in this 
paper. 

The work reported here was made possible by the support of the NASA Langley 
Research Center through grant NSG-1076 and by the Bristol Engine Division of 
Rolls-Royce (1971) Ltd. 
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